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Lecture 18: Steels I
November 6, 2001

Introduction:

We previously discussed fundamentals of the interpretation of binary phase
diagrams, and applied these concepts toward an understanding of the various
phases and microstructures possible in iron and steel alloys. By learning how to
predict microstructures as a function of composition, thermal history, and cooling
rates, we can make judicious selection of materials for various applications. In our
previous discussion, we began examining some of the possible microstructures
resulting from cooling austenite. It is precisely because of such widely different
microstructures that the various grades of steel serve a diverse range of
applications. Today we expand our examination of microstructures in steel and
also in cast irons.
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Alloy classification scheme

Metal alloys

Ferraus Manfarraus

Steels Cast irons

Low alloy Gray Ductile White Malleabla
o (rodular) iron o raf
High alloy
Low-carbon Medium-carbon High-carbon
Plain High strength, a Heat Slain Taal Stainless
o alloy treatable
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Fe-C equilibrium phase diagram
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Phase Transformations in Steels - Spheroidite

A two-phase eutectoid (lamellar)
microstructure resulting from
equilibrium cooling
transformation of y to (0 + Fe,C).

Another two-phase
microstructure resulting from
rapid cooling transformation of y
to (0 + Fe,C).

Spheroidite:

Two-phase microstructure of a +
Fe,C resulting from heat
treatment of pearlite or bainite
just below the eutectoid
temperature (Al). Reduction in
Fe,C - a surface (or interfacial)
area causes cementite bands or
needles to become spherical.
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improved.

Typical Fe-C microstructure
following a spheroidizing
heat treatment.
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Phase Transformations in Steels - Martensite

The martensitic transformation
is not unique to steels.

- —— J—l‘x,)-,

It is fundamentally different

than other transformations Mooy
because NO DIFFUSION IS Bai d
INVOLVED (called ain correspondence
lating the yFCC
“athermal”). (relating the y

structure to BCT)
Martensitic transformation

occur as a result of rapid < 309

quenching via local £ 300

(cooperative) rearrangement of EE »osh c-axis

Fe atoms. This rearrangement S ‘ ch =1 + 0045 (% ©)

of atoms produces a new E 200 - o -
crystal structure (BCT). Since 085% N Lw——.afj:in_ Typical martensitic microstructure
no diffusion is involved, this (dark grains are BCT-martensite,
transformation takes place 280050 05 08 10 13 13 15 llghter.reglons correspond to retained
very fast.(i.e., at the speed of Carbon, % austenite (Y).

sound in the material) Relationship between carbon content and

lattice asymmetry in FCC (y) to BCT.
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Martensitic transformation

Types of martensite:

I. Lath martensite >

forms in alloys with < 0.6 wt. %C
(low to medium carbon steels)
grows as long, thin plates aligned
parallel to each other

Blocks

I1I. Plate martensite

also called “Lenticular”

found in alloys with > 0.6 wt. % C
(medium to high carbon steels)
needle-like or plate morphology

Characteristics:

 Martensite IS a different phase! =—————)p
* Extremely hard
* Results in dramatic increase in
strength & decrease in ductility
* Usually co-exists with retained

) Body-centered Tetragonal
austenite (BCT) crystal structure
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Complete TTT curves (eutectoid composition)
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Complete TTT curves (other compositions)
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Continuous cooling curves - steels
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Continuous cooling - steels

Cooling rates:

It should be clear that different
microstructures will result from
different cooling rates. For
example, we know that rapid
cooling gives fine pearlite
whereas slow cooling gives coarse
pearlite.

How can we represent different
cooling rates on the CCT
diagram?

Difference:

During continuous cooling, all
available austenite transforms to
pearlite by the time the bainite
transformation becomes possible.
Therefore, bainite is not
represented on the CCT
diagrams. Any remaining Yy
simply transforms to martensite
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Fe-C alloys: mechanical properties
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As carbon content in steels increases, strength also increases but at the expense of ductility
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Fe-C alloys: mechanical properties

0
Note the 90
difference in
hardness 3201 8=
70—
could.you 080
explain the a0l
reason for 5
= 24l — -
this? 5 Fine pearlite = 50—
= Coarse pearlite #
5 ] e Coarse pearlite
= 200 ¢ = o _
: L T Wb s
@ YT E: ?
é
20— —
120 |—
10— —
a0 |—
I I IR I oy HN N I N Y N
0 0.2 0.4 0.6 0.8 1.0 o 0.2 0.4 0.6 0.8 10
Compasition (wt% C) Composition (w3 C)

Increasing carbon (i.e., Fe,C) results in increased hardness.
Note how hardness depends on eutectoid lamellar spacing (fine pearlite vs. coarse pearlite)
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Fe-C alloys: mechanical properties

How does the hardness of martensite compare with fine pearlite?
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The extreme hardness of martensite is thought to be more of a result of its crystal structure
(BCT - limited # of slip systems) than its microstructure
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Tempered Martensite

MPa

Tempering temperature {°F)
400 &00 800 1000 1200

As-quenched:

1800 — 260

Martensite is extremely brittle; Yield and tensile strength

LR 240 Tensile strength
so much S0 thatitis not o b both decrease but ductility
appropriate for most structural 220 . .
applications e stenetn is increased. Overall, this
. 1400 —

200

material is more usable than

180 quenched martensite.

1200 —

&0

Tensile and yield strength

Suppose a martensitic

180
1000 — 50
140
Reduction 40
in area

duction in area (35)

microstructure is heat treated for soo— 12017 — ., 4
. : . | | | |

some time below the eutectoid R

temperature (250 tO 6500C). Tempering temperature (*C)

Martensite, being metastable,
transforms into ferrite +
cementite. However, the size of
the Fe3C is microscopically
small; much smaller than in
spherodite.

Note the fine particles
of cementite in a ferrite
matrix. This image was
magnified nearly

These serve as very effective 10,000X

barriers to dislocation motion.
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To summarize...

Austenite
A
\
\
1"1 Diffusionless
Slow Moderate Rapid / transformation
cooling cooling quench
/ ‘
\
hJ 4
( Pui_irmlille:,*‘ Bainite Martensite
A (o + FesC phases) (BCT phase)
a proeutectoid phase =
Reheat

\

Tempered martensite
(e + FegC phases)
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Prediction of equilibrium microstructures - |

Given a steel of
composition C, can
you predict what the
room temperature
microstructure would
look like, assuming
equilibrium cooling
from the austenite
phase?
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Prediction of equilibrium microstructures - |l

Compesition (at% C)

Temperat ure (*F)

Now, given a steel of 16007 I Ii:’ I|5 El'j 25
composition C,, can
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room temperature tane o e00
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